TIME INDEPENDENT QUANTUM CIRCUITS

Or

MODULAR QUANTUM CIRCUITS

Vahid Karimipour, Sharif University of Technology, Tehran, Iran.

lurin, May

Turin, May 2017

A FEW REMARKS

No real experiment

No proposal for experiment

Just theory or even speculation

Everything which is not forbidden by the laws of physics, is experimentally feasible

Turin, May 2017

ABSOLUTELY NO DETAILS

Time independent quantum circuits with local interactions

Sahand Seifnashri, Farzad Keyanvash, Jahangir Nobakht, Vahid Karimipour

Phys. Rev. A 93, 062342 (2016)

- · Horizontal lines represent flow of time
- Gates are localized in time
- A great deal of external control is needed

Classical Circuit

Quantum Wires

S. Bose, Quantum Communication Through an Unmodulated Spin Chain, Phys. Rev. Lett. **91**, 207901 (2003).

What we like to happen

$$|\varphi\rangle|g.s\rangle = |a| |\rangle + b| |\rangle|$$

$$|g.s\rangle|\phi\rangle = | \bullet \bullet \bullet \bullet \bullet \bullet \bullet \rangle a| \bullet \rangle + b| \bullet \rangle$$

What actually happens

$$\overline{F(\varphi,\rho_N)} =$$

Quantum Gates

Time Independent Universal Computing with Spin Chains: Quantum Plinko Machine **Kevin Thompson, Can Gokler, Seth Lloyd and Peter Shor.** New Journal of Physics (2016)

$$H = \sum_{i,j} \frac{1 - \sigma_{z,i}}{2} \otimes \frac{1 - \sigma_{z,j}}{2}$$

The drawback is long-range interactions

A lesson from gauge theory

Using gauge particles to mediate long-range interactions

The effective interaction

So we need an ancillary chain with

- 1- Doubly degenerate ground state
- 2- Large gap

3- an inter-chain Hamiltonian whose effective interaction generates CZ

Photon=Ancillary Rail

$$H^{anc} = \frac{1}{4m} \sum_{i=0}^{N-1} \left(\mathbb{I} - Z_i - \frac{X_i X_{i+1} + Y_i Y_{i+1}}{2} \right)$$

Sahand Seif Nashri

Farzad Kianvash

Jahangir Nobakht

The ancillary rail has two degenerate ground states

$$\Omega
angle = \ket{\psi}$$

$$|\Omega\rangle = |0000....0\rangle$$
 $|\psi\rangle = \frac{1}{\sqrt{N}} \sum_{x} |000....1...000\rangle$

The large gap, allows us to always stay in the ground space

The local interactions

$$V_{eff} = \hat{N} \otimes \mathbf{X}$$

$$V_{eff}|1\rangle \otimes |0\rangle = |1\rangle \otimes |1\rangle$$

$$V_{eff} = N \otimes X$$

 $V_{eff} |1\rangle \otimes |1\rangle = |1\rangle \otimes |0\rangle$

The effective interaction

$$V = \sum_{j} n_{j} \otimes \boldsymbol{\sigma}_{x,j}$$

$$P = |\Omega\rangle\langle\Omega| + |\psi\rangle\langle\psi|$$

$$V_{eff} = PVP$$

$$V_{eff} = \hat{N} \otimes \mathbf{X}$$

Summary

20

Thank you for your attention